

Tillage and Crop Rotation Effects on Selected Soil Chemical Properties and Wheat Yield in an Oakleaf Soil Form in the Eastern Cape, South Africa

Mtyobile M

Theme: Building a Resilient Future in Africa through Conservation Agriculture and Sustainable Mechanization Organizers

Introduction

- Soil degradation is leading to general poor soil fertility and crop yield reduction
- Farmers' practice of conventional tillage (CT) without residue retention promotes the reduction of SOM
- Most soils in the Eastern Cape are reported to have less than 1% SOC, far below the critical level of 2% by which soil quality declines
- Research has shown that SOC can be increased over time through changes in the management practices of arable soils
- Conservation agriculture (CA) is one such technology, which plays an important role in sustainable soil productivity

Introduction cont..

- Little information is available on the effects of CA on soil chemical properties, particularly in rotations that involve wheat in the Eastern Cape Province
- Planting a winter crop such as wheat is believed to result in timely utilization of available water, reduce soil erosion, and build organic matter in the soil
- Longer rotation including wheat often aids in weed management by suppressing the common winter weeds
- CA practices need to be determined for improved wheat yield and sustainable soil fertility in semi-arid environments such as those experienced in the Eastern Cape

Experimental site

- The field trial was established at the University of Fort Hare research farm (UFH) in the Eastern Cape
- UFH site (32°47' S and 27°50' E) is at an altitude of 508 metres above sea level
- It is in a semi-arid area and receives an average of 575 mm annual rainfall
- Has Oakleaf soil form (Soil Classification Working Group, 1991)

Experimental design

• 2 × 4 factorial experiment laid out in randomized complete block design

Experimental design

- Main plots were allocated to no-till and conventional tillage (CT)
- Main plots were split into four crop rotations; maize-fallow-maize (MFM), maize-fallow-soybean (MFS), maize-winter wheat-maize (MWM) and maize-winter wheat-soybean (MWS)
- Main plot sizes were 32.5m × 10 m, sub plots were 7m × 10 m
- Net plot size was 3 m × 4 m

Field and laboratory measurements

- Early maturing spring wheat cultivar (SST015) was planted in winter at a seeding rate of 100 kg/ha
- Soybean cultivar (PAN 5409RG) was sown in summer targeting a population of 250,000 plants/ha
- Short season and prolific maize cultivar (BG 5785BR) was planted in summer targeting a population of 25,000 plants/ha
- Five soil cores were collected randomly to make a composite sample from each plot

Field and laboratory measurements

- SOC, Ammonium-N (NH4-N) and nitrate-N (NO3-N) were analysed following the methods in Okalebo et al. (2002)
- Olsen P, Extractable K and Ca were determined using a continuous flow analyzer
- Soil pH was determined using a WTW pH 526 meter
- Grain yield was collected after threshing the adjusted to 12.5% moisture content
- A JMP statistical package version 13.1 was used for the analysis of variance

Results and discussion

Table 1: ANOVA results for soil chemical properties at UFH experimental site

Treatments	SOC	NH ₄ -N	NO ₃ -N	Total Mineral-N	Ρ	К	Са	Mg	Zn	рН	EC
0-5 cm depth											
Tillage	*	*	*	**	ns	**	ns	ns	ns	ns	**
Crop rotation	*	ns	ns	ns	*	*	**	**	ns	ns	ns
Tillage × crop rotation	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
5-10 cm depth											
Tillage	**	*	ns	*	*	ns	**	ns	*	ns	ns
Crop rotation	*	ns	ns	ns	*	**	**	ns	ns	ns	ns
Tillage × crop rotation	ns	ns	ns	ns	ns	ns	**	ns	ns	ns	ns
10-20 cm depth											
Tillage	ns	*	ns	*	*	ns	ns	ns	ns	ns	ns
Crop rotation	*	ns	ns	**	*	ns	ns	ns	ns	ns	**
Tillage × crop rotation	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

Results and discussion

Table 4: Tillage and crop rotation effect on wheat grain yield (tons/ha) at UFH experimental site

	No-till	СТ	Means
MWM	3.13	3.35	3.24
MWS	3.33	3.18	3,26
Means	3.23	3.27	3,25
LSD _{0.05}	0.48		
ANOVA	p-value		
Tillage	0.77 ^{ns}		
Crop rotation	0.91 ^{ns}		
Tillage × crop rotation	0.16 ^{ns}		
CV %	9. 47		

Conclusion

- The combined effect of no-till and crop rotations was critical in improving soil chemical properties in this short-term study
- The results indicate that rotation of cereal with legumes under no-till hold the key in ensuring wheat yield stability
- Therefor, this rotational system can be promoted as an entry point for the farmers who wish to practice CA in the Eastern Cape, South Africa

Thank you for your attention

3ACCA Secretariat

African Conservation Tillage Network

P.O Box 10375, 00100 Nairobi, Kenya. KALRO - KABETE, Waiyaki Way. Website: https://africacacongress.org Email: cacongress@act-africa.org